Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai–Tibetan Plateau
نویسندگان
چکیده
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.
منابع مشابه
Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective
Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost...
متن کاملEffect of Degradation Intensity on Grassland Ecosystem Services in the Alpine Region of Qinghai-Tibetan Plateau, China
The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment class...
متن کاملSeasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau
This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photos...
متن کاملEffects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and d...
متن کاملEcosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau
The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 ...
متن کامل